En cas de non fonctionnement, pensez à nettoyer le cache Internet de votre machine.
Project
télécharger l'aide générale
Choice of station
Choice of station:
You have a choice of more than 400 meteorological stations covering Southern Europe and North Africa, as well as the French over seas territories.They are classified by country and then, in case, by region.
Country
Station
Algérie
Allemagne
Autriche
Belgique
Benin
Brésil
Bulgarie
Burkina Faso
Cameroun
Chine
Chypre
Côte d ivoire
Danemark
Egypte
Espagne
Finlande
France
Grêce
Hongrie
Irlande
Israel
Italie
Jordanie
Liban
Madagascar
Mali
Malta
Maroc
Mexique
Niger
Nigeria
Norvege
Pays-Bas
Pologne
Portugal
République Tchèque
Roumanie
Royaume Uni
Sénégal
Slovaquie
Slovénie
Suede
Suisse
Syrie
Tchad
Tunisie
Turquie
Selected station :
Latitude :
Cold water temperature
by ESM2 method
by ESM2 method +3°C
personnal values
Defined DHW consumption
at back up nominal defined value
at distribution temperature
T (°C)Cold water
T (°C)Produced hot water
Volume (l/d)Produced hot water
T (°C)
eau chaude
distribuée
Volume (l/j)
eau chaude
distribuée
documented
Year
Month
Year
Month
Year
Month
Year
Month
Year
Month
yearly average
January
February
March
April
May
June
July
August
September
October
November
December
m3/year
m3/year
Total year
Hydrualic loop
DHW production schematic
collective
indivualised collective
collective with individualised back up
collective with buffer loop
indivualised collective with buffer loop
Installation type
External heat exchanger - 2 pumps
Internal heat exchanger - 1 pump
Direct without exchanger - 1 pump
Internal heat exchanger - Thermosiphonic
Direct without exchanger - Thermosiphonic
Distribution \"umbrella\" - 1 pump
Distribution \"rake\" - 1 pump
External heat exchanger & loop - 2 pumps +1
Internal heat exchanger & loop - 1 pump +1
External heat exchanger - 2 pumps + 1 pump
Internal heat exchanger - 1 pump + 1 pump
Direct without exchanger - 1 pump + 1 pump
Distribution \"umbrella\" - 1 pump + 1
Distribution \"rake\" - 1 pump + 1
External heat exchanger & loop - 2 pumps +1
Internal heat exchanger & loop - 1 pump +1
Installation type:
It is possible to choose between 5 system types :
Forced circulation, separate heat exchanger
This offers the greatest freedom in installation design and obtains the best results. It is obligatory for large collective installations.
Forced circulation, with a heat exchanger
The collectors can be separated from the storage tank. This system is needed whenever there is a risk of freezing or when the water is corrosive. For individual or small collective systems.
Forced circulation without a heat exchanger
The collectors can be separated from the storage tank. It is limited to systems where there is no risk of freezing or corrosive water. For individual or small collective systems.
Indirect thermosyphon
With a heat exchanger, it is limited to small installations where there is a risk of freezing. The storage tank is always above and close to the collectors.
Direct thermosyphon
Without a heat exchanger, it is limited to small installations where there is no risk of freezing. The storage tank is always above and close to the collectors.
Primary loop
Exchanger
Automatic
Pipe length seizure and linear heat losses
Automatic
Exchanger power seizure
Total length
m
Linear heat losses
W/m/°C
Power (per m² of collector)
W/°C/m²
Buffer loop
Circuit eau technique
: 2 modèles de définition pour chacun des 3 aspects (4 paramètres)
Attention
: SOLO2018 repose sur l'hypothèse essentielle suivante. Toute la consommation ECS doit être « solarisable », donc la pompe du circuit ET doit fonctionner dès qu'on a puisage. Pour plus de détails, voir l'aide générale téléchargeable.
SOLO2018 fait une deuxième hypothèse interne sur le débit de pointe de la consommation, hypothèse cohérente avec les applications dans le logement collectif comme dans les établissements de santé ou les hôtels. Voir l'aide générale pour des applications particulières.
3 aspects sont considérés : le débit du circuit eau technique (ET), la puissance de l'échangeur ET – ECS, les pertes du circuit ET (définies par 2 paramètres : la longueur et perte linéique). Pour chacun des aspects, l'utilisateur peut se contenter de la définition automatique par SOLO ou définir lui-même les valeurs nécessaires.
Buffer loop flow rate
Débit du circuit technique
: par défaut, le débit du circuit ET est pris comme identique à un débit classique au primaire d'une installation solaire (40 litres/h/m² de capteur).
Pour une installation normalement dimensionnée, ce débit est supérieur au débit de pointe ECS à 10'. Un débit inférieur au débit par défaut ou au débit de pointe ECS devrait être évité.
>
Buffer loop exchanger
Puissance de l'échangeur
: par défaut, la puissance de l'échangeur ET-ECS est supposée identique à la puissance par défaut de l'échangeur solaire (soit 100 W/m²/°C).
Buffer loop heat losses
Pertes du circuit eau technique
: par défaut, le circuit ET est supposé avoir une longueur de 10 m et une perte linéique de 0,3 W/m²/°C, valeurs classique pour un échangeur ET-ECS situé en chaufferie à proximité immédiate du stock solaire.
Ces pertes sont faibles en valeur relative sur une installation standard de grande taille mais pas forcément sur une petite installation ;
Attention : si le circuit ET est long, il est essentiel de saisir manuellement les bonnes valeurs caractéristiques car ces pertes ne seront plus négligeables même pour une grosse installation
Automatic
Flow rate seizure
Automatic
Exchanger power seizure
Automatic
Loop heat losses seizure
Buffer loop flow rate
m3/h
Exchanger power
W/°C
Total length
m
Linear heat losses
W/m/°C
Recirculation
Independant loop, no solar back up possible
Recirculation on the back up storage, indirect solar input
Recirculation controlled on solar storage, direct solar inputs
Permanent recirculation on solar storage, direct solar input
No recirculation heat losses
Flow rate and delta T both known
Lenght and DeltaT both known
Short recirculation loop well insulated
Recirculation loop of average quality
Long recirculation loop badly insulated
Recirculation flow rate
m3/h
Maxi DeltaT for recirculation
°C
Total length
m
Linear heat losses
W/m/°C
Yearly recirculation heat losses
MWh/year
Solar storage
External
T (°C) around the solar tank
Global storage values
Detailed storage values
Year
Month
Total volume
liters
Cooling constant
Wh/day.l°K
T° maxi
°C
Detailed storage values
Unitary volume
liters
Number of tanks
Insulation
Rockwoll
Polyurethan
Other
Lambda for insulation
W/m/K
Insulation thickness
cm
Solar collectors
Collectors:
The figures can be found by choosing a collector in the given list of products. The "Avis Technique" is a test certificate delivered by the CSTB, it is obligatory in France.
Coefficients &nu
o
, a1 and a2
(Solo CSTB): These coefficients refer to French standards for collector testing :
B
: optical efficiency of the collector (maximum efficiency without heating).
K
: heat loss coefficient in W/°C.m2
B
: optical efficiency of the collector (maximum efficiency without heating).
K
: heat loss coefficient in W/°C.m2
Coefficients B and K
(Solo CSTB): These coefficients refer to French standards for collector testing :
B
: optical efficiency of the collector (maximum efficiency without heating).
K
: heat loss coefficient in W/°C.m2
Choose a solar collector
Manufacturer
ACV France
ALLIANTZ France
ARISTON THERMO GROUP
Atlantic Industrie
ATLANTIC SFDT
BAXI S.A.
BDR Th512
BDR Thermea
BDR THERMEA / DE DIETRICH
Bosch Thermotechnologie SAS
CASATHERM
CHAFFOTEAUX
CHAPPEE S.A.
CLIPSOL
CONERSOL
Daikin Airconditioning France SAS
DAK
DE DIETRICH THERMIQUE
Distribution Sanitaire Chauffage
DUALSUN
EKLOR
ELM LEBLANC
ENERGY CONCEPT
ESE
FREEHEAT SAS
FRISQUET
GrEENoneTEC SOLAR-INDUSTRIE GmbH
HELIOAKMI SA
HELIOFRANCE
HELIOPAC
HOVAL France SAS
JACQUES GIORDANO INDUSTRIES
KALINASOL
KINGSPAN RENEWABLES LTD
Nateos
OERTLI THERMIQUE
ORO TECHNOLOGIES
P2S
RIELLO Spa
ROTH France
SANIT 'AIR
SATE (Sté Applications Thermiques Européenne)
SAUNIER DUVAL
SCHUCO INTERNATIONAL SCS
SGP
SOLAIREENLIGNE
Solimpeks Group
SOLISART
SONNENKRAFT France SAS
SUN RAY
Syrius Solar Industry
TECHNIFROID
TERREAL
Thermor Pacific
VAILLANT Gmbh
VAILLANT Group France
VELUX
VIESSMANN
WAGNER and Co
WAGNER and Co Solar France
WEISHAUPT SA
WOLF France SAS
WOLF GmbH
Collector
Define a collector by its coefficients n0, a1 and a2
coefficient n
0
coefficient a
1
W/m²/K
coefficient a
2
W/m²/K
Define a collector by its coefficients B and K
coefficient B
coefficient K
W/m²/K
Collector tilt angle
°/Horiz.
Collector slant:
For use throughout the year, the general rule is as follows : Slant = Lat + 10° and the slant can be increased by + 15° if the use is mainly in winter.The slant can be reduced by 15° for summer use. In the South of France as in the North of Spain and Italy, one obtains :
Annual use : slant = 45° from horizontal
winter : slant = 60°
summer : slant = 30°
Azimuth
°/
Collector orientation:
The best orientation is South (in Notrh hemisphere), with a possible tolerance of 15 ° to the East or the West.Wider variations can cause an important drop in performance.
In order to take into account possible masks, I want to capture my sunshine data
in the collector plane. The default values
tilt and azimuth will be displayed
Useful area
m2
Number of solar collectors
Total aperture area
m2
Aperture area:
The aperture area is the maximum projected area through which unconcentrated solar radiation enters a flat plate collector and the sum of the projected areas for a vacuum tube collector. It is different from the gross collector area which is the maximum projected area of a complete solar collector, including the lateral insulation. The difference is important when comparing the performance of several collector types.
One can choose between 1 and 2 m2 of collector area for an average hot water consumption of 100 l/day.